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THEORY OF SYSTEM TYPE FOR LINLAR MULTIVARIABLE SERVOMECHANISMS
J. S. Meditch
School of Engineering
University of California
Irvine, California
C.A. Wolfe
Orincon, Inc.
San Dicgo, California
ABSTRACT
L Y (s) E(s) Y (s)

A theory of system type for linear mul- d £~ 0
tivariable servomechanisms is developed. New G(s) -
characterizations cf system type are formu- =
lated and two systematic methods for deter-
mining system tyove are derived. Both methods i
are algorithmic and easier to apply than the
techniques, given in earlier studies. The Y - input (desired output) Y - output
first applies to the case where the open-loop d G - transfer
system is described by its transfer function E - error function

matrix, the second where its time domain
state-space representation is given. New re-
sults are also presented for characterizing
and identifying the system type for certain
composite systems from a knowledge of the in-
dividual subsystem types.

I. INTRODUCTION

In classical servomechanism theory [1,
2], "system type" is a well established and
widely used concept for determining the
steady-state tracking error characteristics
of a closed-loop system from a knowledge of
its open-loop transfer function. Specifically
a single-input/single-output unity feedback
system (see Fig. 1) whose open-loop transfer
function can be put in the form

KN (s)
G(s) = sQD(s) (1)

is said to be a "type 2" servomechanism*. 1In
Fg. (1), K is a nonzero real constant; and
N(s) and D(s) are monic polynomials in the
complex variable s which (i) are of degree m
and n-%, respectively, where #i<n and 0<£&<n,
and (ii) have no common factors or zero roots.
If the closed-loop system is stable, it is
known [1,2] that the steady-state error

e = lim e(t) 2 lim [yd(t) - y(t)]

t+> tex

is zero for all polynomial inputs of the form
f=1 i
y(t)= 2at
d i=0 1

where t20 and the a; are arbitrary real con-
stants.

¥FIt 1s sometimes alsc convenient [1,2) to re=-
fer to G(s) as being type 2.

Fig. 1 Unity feedback system.

The extension of this concept to the
case where the system in Fig. 1 is a multivari-
able (m-input/m-output), m>l, system is a non-
trivial matter and has been the subject of a
number of investigations [3-8]. The difficul-
ty stems from the interactions of the various
inputs with the outputs. This unfortunately
precludes identification of system type from
the open-loop transfer function by direct in-
spection as in the scalar case. More funda-
mentally, there is the issue of what consti-

, tutes a useful definition of type for multi-
variable systems.

Wiberg (3] defines a unity feedback mul-
tivariable servomechanism to be type 221 if
the m-dimensional error vector e(t) = yq(t)-
y(t) has the property that

lim e(t) = 0

to+>

when the input is

y (t) = . t (2)

d .
a
L 'n]
where t20 and the a; are arbitrary real con-
stants. He then shows that a necessary and
sufficient condition for the closed-loop sys-
tem to be tyve ¢ is that the m x m open=-loop
transfer function matrix G(s) be expressible

G(s) s ‘R(s) + P(s)
where R(s) and P(s) are such that

=1
lis sR (s) = 0 and ||lim s&-1p(s) ||«
s+ < s+0
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where ()71 and |1+l denote matrix inverse
and norm, respectively., Except when m 1s two
or three, the above condition is difficult
and awkward to apply.

I'n the approach taken by Sandell and

Athans [4) (see also [5]), a unity feedback
multivariable servomechanism ic said to be
type «~ 1f ¢ is the largest nonnegative inte-

ger for which the open-loop transfer function
can be written

1
st

G(s) = G'(s)

where G'(s) has nonsingular d.c. gain. The
latter requires that

lim AG.(s) det G'(s) # 0
s+0

where 4niv(s) is the characteristic polynomial
of G'(s), that is the least common dencmina-
tor of all minors of G'(s), and det denotes
the determinant. This condition is eguiva-
lent to G'(s) having no zeros [19] at the ori-
gin. Using their definition, Sandell and
Athans show that the closed-loop system, if
stable, has zero steady-state error for an
input given by Eg. (2). Their condition is
easier to check than Wiberg's, but also re-
quires a certain amount of trial and error.

Hosce and Ito [6] were the first to ob-
serve that the use of a single number is in-
adequate for characterizing system type in
the multivariable case. For example, if

0

ni-

G(s) =

1 s+2

s s?
the closed-loop system has zero steady-state
error when the input to the system's first
"channel” is a step and that to its second
channel is a ramp. As a result, an accurate
description of system type in this case is
[£, 2,}=[1 2] in contrast to both the Wi-
berg and Sandell-Athans formulations which
indicate that the closed-loop system is type
1. The definition of system type thus pro-
posed by Hosoe and Ito is in terms of the vec-
tor type [%,2,...2 ] where 2;20 is, for each
i=1,2,...,m, the sPstem type for the ith
input-output pair in the classical sense.
Their test for system type consists of first
expressing G(s) in a partial fraction expan-
sion

Gls) = )E‘ L +&ts)
=1 st

here G; are nonzero constant matrices, and
(s) is“rational and has no poles at zero.
Letting G! be the matrix obtained by deleting
the ith rdw of Gy, one forms

r : s
G i gl i
s G, ¢, ¢ ... ¢}
= 3 con : = i i
N 92 G, ? and Ny Gy G; ... 9
VR S él o 0
o P o

Then, &3 = rank N - rank N;. This test, which
is conceptually simple, can become involved
when p is large. ;
Young and Willems (7] approach the type
1 multivariable servomechanism problem by aug-
menting the usual time-domain state-space des-
cription (A,8,C) by the integral of the error,

viz.,

t
i/r [y (1) - y(1)]an
0 r

They then show that the augmented system is
controllable if and only if (A,B) is control-
lable and
A B
rank = n+m
-C 0

With these conditions satisfied, they are able
to assign the closed-loop poles arbitrarily
via state variable feedback, and so stabiliz-
1ing the system guarantee zero steady-state
error when y_ 1s a vector of step inputs. The
extent to which any channel of the closed-loop
gives zero steady-state error for higher-order
inputs, e.g., ramps, parabolas, etc., is un-
known. Porter and Bradshaw [8] subsequently
extended these results via higher order aug-
mentation to arbitrary type. Interestingly,
their conditions for controllability, and
therefore for pole placement, are identical to
those above. Earlier work along these lines
had been conducted independently by Smith and
Davison [9].

An alternate viewpoint on the problem of
system type is to consider the system to be
asymptotically cdecoupled for a certain class
of inputs. In this case, the problem is simi-
lar to those posed and solved by Davison [10]
and Huang [11].

A distinctively different approach to
the problem of determining conditions for zero
steady-state tracking error is given by the
geometric theory of linear multivariable con-
trol [12]. Conditions, expressed in terms of
invariant subspaces, which guarantee the de-
sired tracking properties have been obtainead
by Bhattacharyya and Pearson [13,14], Wonham
[15), Wonham and Pearson [16], and Francis
and Wonham [17]. System type is not dealt
with explicitly in these studies, but it
would seem that an intimate connection should
exist. :

The approach taken here is based on a
generalization of the Hosoe-Ito definition.

It leads to new characterizations of system
type and provides methods for determining
type from either the open-loop transfer func-
tion matrix G(s) or the state-space represen-
tation (A,B,C,D) which are simpler to apply
than those in previous works. These topics
are *‘treated in Sections II and III. 1In Sec-
tion IV, new results are obtained for the
characterization and identification of type

for composite systems. The conclusion is given

in Section V. In a companion paper [18], the
theory and methods for achieving a specificd

type via either pre- or post-compensation are
presented.
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II. TYPE l‘\“: «e. ' ) TRANSFER FUNCTION
MATPICLS m

The following is a generalization of the
Hosoe-Ito [6]) definition of system type.

‘Definition 1
A unity feedback multivariable linear
syotom is called type [Li1f; ... 2,) if each

i=1,2,...,m, is the largest integer such
tﬁat the m*m open-loop transfer function mat-
rix G(s) can be factored into

G(s) = H(s) G'(s)

where

H(s) = diag —%— —%— s —%—
giaa s'm

and G'(s) has no 2eros at the origin. Here,
G(s) is termed a type [illz ... 2] transfer
function matrix.

This definition generalizes that in [6])
to the extent of allowing £;<0. In terms of
the steady-state tracking properties, it is
of no consequence whether the 2; are less
than zero or equal to zero. The magnitude of
L;, when {; is less than zero, however, will
be of importance in the sequel when the pro-
blem of system type for series connections
of systems is considered.

It is worthwhile to note at this point
that system type for multivariable systems
is defined in terms of a left divisor. It
will be shown that this leads to meaningful
results for steady-state errors. The follow-
ing simple example shows that a right divisor
will give different results, in fact, results
which are erroneous.

Example 1. Let

0|

1
s
G(s) =
1
s+1

Factoring G(s) according to the definition
yields

1
s 0 I 3
G(s) =
0 1 S
s+1

Thus G(s) is the open-loop transfer function
matrix of a type [1 0] system.

If now an attempt is made to find an
H(s) which is a right divisor, none can be
found except the identity. This would indi-
cate that G(s) is type (0 0]. ([

With system type as specified by Defini-
tion 1, it will be shown below that a stable
servomechanlsm with a type (2,8, ... gy
open-loop transfer function matrlx yields
zero steady-state error for input signals of
the form
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y (t) = (3)
a

where for £.>0, the aj are arbitrary real con-
stants and b<k <2; with the kj integers; and
for 21_0, ai—kl-O

The followlng definition and lemma will
be useful in the proof of the main theorem of
this section.

Definition 2.
With G(s), H(s), and G'(s) as in Defipi-
tion 1, H(s) and H(s) are defined by

g(s) = diag .%= _%: cee _%:
871 872 s
ﬁ(s) = diag [.l_ 2 DR ]
L+ 2+ L+
518 2 s'm
where Ls If s > 0O L. if 2: < O
g+ =31 3 and 23 =31 1
g o 4f£4p 50 0 if 25 20
so that
~ N, "N, ~
H(s) = H(s) H(s) = H(s) H(s) O

Note that H(s) has only_ nonnegative pow-
ers of s as elements, while H(s) involves only
nonpositive powers of s. Now G(s) can be
factored as
~ n
G(s) = H(s) G'(s) = H(s) G(s)
A
where &(s) = H(s) G'(s).

With G(s) = ﬁ(s) E(s) as above,

Lemma 1.
AG = AH Aa.
Proof. From Lemma 1 of [4] it follows

that AG divides AH\G' Thus it sugfices to show
that deg (Ag) = deg (4j) + deg (Ag). By the
definition St H(s) and f(s), each factor of s
in AH must _ correspond to factoring a pole of
G(s) into H(s). Otherwise, Ag would remain
constant while the determinant would lose a
factor s~!, adding a zero at s=0, which is not
allowed. Thus, each factor s in Afj reduces the
order of A; by one when going from A; to form
Ag. Also, the factorization cannot introduce
any other new poles. Hence,

deg (Ag) = deg (AR) + deg (Ag) o




A simple modification of the proof of
this lemma shows that L, = A, L.

Now the thecorem on steady-state error
can be stated and proved.

Theorem 1,

T Let G(s) by a type [%,2, ... 2_) trans-
fer function matrix. Then the 5tab?e unity
feedback system having G(s) as its open=-loop
transfer function matrix will track inputs

of the form given in Eq. (3) with zero steady-
state error.

Proof. The Laplace transform of Eq. (3)
yiclds

a a a
Y (s) = 1 2 ARER T

Skl*l sk;+l kat1

i s
where ( )  denotes the transpose. Then the
Laplace transform of the system error is

E(s) = (I + G(s)] ! vd(s) (4)

Now with H(s) as given in Definition 2,
it is noted that

lim H-!(s) Y. (s) = 2 (5)
s+0 d o

where Zo is a finite m-vector.
Thus if [I + G(s))~'! is factored as

(1 4 G(s)]=" = {H(s)- [H-!(s) + G(s)]}~!

(A= (s) + G(s)]™'A~!(s)

[}

and it can be shown that

lim(H=} (s) + &(s)]7} = G, (6)
s+0

where G, has finite elements, then the com-
bination of Egs. (4),(5), and (6) can be used
to show that

lim s E(s) lim s - lim E(s)
s-+0 s+0 s+0

= lim s - lim [H=}(s) +&(s)]?
s-+0 s+0

o lim [H™!(s) Y4(s)]
s+0

= lim s G, 2. = 0
T i (7)

Finally, Eq. (7) can be used in the final-
value theorem of the Laplace transform to
prove the present theorem.

First, Eq. (6) must be proved. By the
assumed stability of the unity feedback sys-
tem, the zeros of the polynomial A, det
[I + G(s)] must be in the open lefg-half com=~
plex plane [20]. Then

lim 45 det [I + G(s)] # 0 (8)
s+0

Using Leﬁma 1,
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bg det [I + G(s)) = by det[I + G(s)]

g
v %
by b det [1(s))

e det[fi™!(s) + G(s)] (9)

By construction of ﬁ(s).
by det [fi(s)] =1 (10)
Combining Egs. (10),(9) and (8) yields

Jim 87 det [H='(s) + &(s)] # 0 (11)
s+0

With the product in Eq. (11) nonzero, then
E%. (6) will be verified if the product of

Ag with each cofactor of [H™!(s) + G(s)] is a
polynomial in g. Since, H™ (s) has no poles,
the poles of H-'(s) + G(s)] are a subset of
the poles of G(s). 1t then follows, since g
contains a factor for each _pole of G(s), that
4% times any cofactor of [H™!(s) + G(s)] is a
polynomial. As a result,

lim[#~? (s) + &(s)];;
s+0 A

An cofactor [H~'(s) + &(s)]..
lim = 1)
s+0 A% det [H™'(s) + G(s)]

n

a finite number for all i, j

where 1%im and 1%j<m. Thus Eq. (6) is veri-
fied and Eg. (7) holds. Using the final-value
theorem, the steady-state error is zero if the
limit exists. However, by the assumed stabil-

ity of the unity feedback system, the limit does

exist and the theorem is proved.

As an immediate consequence of Lemma 1,
one has the following proposition concerning
bounds on the type of a transfer function type.

Proposition 1. Let G(s) be a type :
{zézz o, Iml transfer function matrix. Also,
le

m m
LY = .Zizi+ and L™ = 3°£;". Then,
i= i=1

(i) L* is less than or equal to the mul-
tiplicity of the pole of G(s) at the
origin

and

(ii)L™ is greater than or equal to the
multiciplicity of the zero of G(s)
at the origin.

Proof. (i) 1If LY is greater than the
multiplicity of the pole of G(s) at the oricin,
then zeros at the origin have been added to
G' (s) contradicting the definition.

(ii) If L™ is less than the
multiplicity of the zero of G(s) at the origin,
then a zero would remain at the origin in G'(s)
again contradicting the definition. [J

III. IDENTIFICATION OF TRANSFER FUNCTION TYPE

If the dimension m of the transfer func-
tion matrix G(s) is small, say two or threce,
the type of the system can be found via trial
and error using Definition 1. However, for
larger values of m, the procedure would be

Lo g g
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extremely tedigus since at each stage the
characteristic polynomial must be computed.
In this section, two simpler methods of com-
puting the system type are given. The first
method gives the system type from a simple
observation of one of the factors in a co-
prime factorization of the transfer function
matrix. The other method is an algorithm
which gives the system type based on rank con-
ditions using rthe state-space representation
(A,B,C,D) which is assuned to be a minimal
realization. These methods are simpler than
the rank conditions in [6), especially if
there are large power of s in the denominator
of any element of G(s).

Both methods considered give the system

into G(s), all of the factors of s in H~! (g)
must be output decoupling zeros and hence re-
movable. By repeated upplicat;o? of the lem-
ma in the Appendix to [D¥(s) ! H” (s)T) with
2=0, the maximal powers of s which can be re-
moved from P(s) are the largest powers of s,
say ij, which divide each element of colunn
of D(s). So the largest power of s in entry
i of H™'(s) such that no zeros are introduced
in G(s) and the largest power of which ai-
vides each element of column i1 of D(s) are
the same, and the theorem is proved. a
Algorithms for determining a coprimc fac-
torization of a rational transfer function
matrix can be found in [22]. The following
example demonstrates the method of determin-
ing system type which is described in the

i

1

S

AR e

type only to the point of determining the
2,%¥. 1f a particular element 2; is actually
negative, these methods will indicate that

above theorem.

the 1; is_equal to zero. Thus, only the ele- Example 2. Let
ments of H(s) are determined. This is, how- -
ever, the only part which is of concern when 1 1 1
the steady-state properties are considered as s s s+2
‘ was demonstrated in the proof of Theorem 1. :
;! The first method is presented by way of G(s) = 0 el 1
; ¥ +
the following theorem. s+2 = S
5 — 0 1
Theorem 2. s? (s+1) s
Let G(s) be the open-loop transfer func- 3 o E
tion matrix of a unity feedback system and : : y ield 3
let D-!(s)N(s) be a coprime factorization of A coprime factorization ylelds
G(f); Then the unity feedback system is type 1 9 4
gt ... 2%} where the 2%, 1 = 1.2, <., o, T 0 0
aré the gregtest power of's such that each s(s+2)
element of column i of D(s) is divisible by
S. 2 G(s)= 0 T—"i—l——jz— 0
Proof. From Definition 1, each 1; is s+l) (s+2) 1
maximal such that nc zeros are introduce 0 0 sZ(s+1)
in G(s) by the factorization G(s) = H(s)G(s). -
Further, G(s) can be expressed in the form
a, ~
G(s) = H™'(s) G(s)
= #-1(s) D-!(s) N(s) i s R
where D~!(s)N(s) is any coprime factorization % 0 s+l 1 é
of G(s), and B8-!'(s), N(s) and D(s) are all
m*m polynomial matrices. The polynomial sys- 1 Y s(s+1)
tem matrix for G(s) is Then D(s) is 1
Sy - ?(s) N(s) o 5 .
-l .
A L eh S D(s) = | o© (s+1) (s+2) 0
The zeros of G(s) are the zeros of det 2
P(s) after the decoupling zeros [19] have 0 0 s® (s+1)
been removed. Since D(s) and N(s) are co- A :
prime, the only decoupling zeros are output and it follows that G(s) is type [1 0 2]. O
decoupling zeros. Let The second method of determining transfer
function matrix type is for the state-space
D (s) N(s) representation (A,B,C,D) which 'is assumed to
P (s) = 1 be a minimal realization with the four matrices
1 ﬁ:‘(s) 0 nxm, nxr, mxn, and mxr, respectively. Rather

than a direct characterization of type, the
following theorem presents an algorithm which

denote P(s) with its output decoupling zeros .
il ¥ 5 - determines the value of 23" for each i.

removed.

The zeros of a(s) are the solutions of
Theorem 3.

If the state-space quadruple (A,B,C,D) re-
presents the open-loop elements of a stable m-
input/m-output unity fcedback system, then the
following algorithm will determine the system
type.

0 det P'(s)

= det ﬁ:‘(s) « det N(s)

So in order that no zeros be introduced
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. Algorithm. Let Q = [CT; ATCTE A2TeT! |,
:An'IICTlT, i.¢., the obscrvability matrix,
and let

44

: SEL pe L) R
Q) = jcd vact 1At c) i, ., (632
i Tl 3 o AN | 1 i
' 1

where CJ) is the matrix C with row i replaced
by row “i of CAJ. With these matrices, per-
form the following steps:

(1) Let p 2 rank Q

(2) Set row counter i = 0

(3) Increment row counter i by 1

(4) Set 3 = 0

(5) Increment j by 1

(6) Form (! .

(7) set k=) rank Q%

(8) If k + j = p, go to (5)

{9) Set 2. = 4 - 1

(10)If i < m, go to (3)

(11) End.

Proof. 1In the proof of Theorem 2, it
was shown that the 2; of the system type vec-
tor are the largest powers of's such that
multiplication of row i of G(s) by s intro-
duced exactly 2. output decoupling zeros.
Multiplication éy larger powers would not in-
troduce any more decoupling zeros. The ef-
fect of multiplication of row i of G(s) by s
to some power when G(s) is given by

G(s) = C(sIT - A)"'B + D

is developed as follows.
The result of multiplying row i of G(s)
by s) is given by row i of

sl ctst - a)"' B + s¥p (12)

By using the identity (sI - A)(sI - A)~!
= I, the result

s(sI - A)"!' =A(sT - A)"! + I (13)

is obtained. Repeated application of Eq.
(13) to Eq. (12) yields the result

s c(s1 - A)~' B + sJp = caJ(s1 - a)-!B

s =k =
£ % CAk Bs’ iy + st
k=0
The system matrix for G(s) with row i
multiplied by sJ] is then

a sI-A B

P?(s) = : j
i cJ DI (s)

. i i

where CJ is given by the algorithm and Dj(s)
is D with row i replaced by.row i of =

b o= TR
p+ 3 s77K1 cakp

k=0

From Theorem 8.1, Chapter 2 of Rosen-
brock {19), the rank defect of the observ-
ability matrix Q is the number of output
decoupling zeros. Thus, when j is increment-
ed by 1 in the algorithm, this corresponds to
multiplication of row i of G(s) by one higher

sJ

power of s. Then if the rank Q) is decreased
by 1 when j is increascd by 1, dn output de-
coupling zero was added. The algorithm thus
finds the largest j such that the rank of ¢J
decreases at cach step which, as was secn i
the proof of Theorem 2, is the &; of the
matrix transfer function.

As was also noted in the proof of Theor-
em 2, the number of output decoupling zeros
introduced by element i of .H™' (s) is inde-
pendent of the others. This justifies the
procedure in the algorithm of looking at one
row at a time. []

The following example demonstrates the
algorithm.

Example 3. Let the open-loop elements
of a unity feedback system be defined by
the quadruple

L 1 07
Ao ® o B=[{1 o0

e .6 o a1

i B [0 07
¢ = D =

R e | [0 o

Using the algorithm, one finds that

rank Q

rank Q; =

rank Q) = (hence 2 = 2)

3
2
rank Q = 1
1
rank Q) = 2
2

rank Q} = (hence 2, = 1)

Thus, [A,B,C,D] represents a type [2 1] trans-
fer function matrix. This can easily be veri-
fied in this case since

s+1
s?
G(s) =
1 1
s s c

IV. SYSTEM TYPE 'FOR COMPOSITE SYSTEMS

In this section, some results are obtain-
ed for system type of composite systems. The
first result is a bound on the system type for
the series connection [see Fig. g(a)] in terms
of the transfer function type of the indivi-
dual transfer function matrices. The second
result gives conditions under which a trans-
fer function type is maintained when it is
connected in parallel with a constant gain
matrix [see Fig. 2(b)].

i 5. RN e 0 ‘

(a) Series connection
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(b) Parallel connection

Fig. 2. Composite system connections.

In the first instance, has the fol-

lowing result.

one

Theorem 4.

T 1f G, (s)
is type [r!L; seag]
ation G, (s)G,(s) is

is type [£L,2, ... Fm] and Gz(s)
then {he serles combin-
at least type [2,42 i,+4
...9 +2] where 2 = min [2!'2' ...i'] (By at
leasc type [, #2 K2+ ... £ it is meant
that each L?gn;on where LY 1s the type for
the ith jnplt-cutput pair of the composite
system.) The proof follows from Def. 1. O
The following corollary is an immediate
consequence of the theorem.

-
=
JN

Corollary 1. If G(s) is type [£,%,
2] and K(s) 1s a dynamic compensator which
1s used to stabilize the unity feedback sys-
tem with G(s)-K(s) as its open-loop transfer
function matrix, then the composite system
is at least type [%,%, ...lm] provided that
K(s) has no zeros at the origin.

Remark. Corollary 1 was stated in [6]
without the condition that K(s) have no zeros
at the origin. A simple example in the single
input/single-output case shows the necessity
for this requirement.

The second result of this section per-
tains to a type [2,%, lm] transfer func-
tion matrix which has a constant gain matrix
in parallel [see Fig. 2(b)]. This result is
used in [23] in a study of stochastic multi-
variable servomechanisms.

o

Theorem S.

Let G(s) = D-'(s)N(s) be a type [£,%,...
m) transfer function matrix and K an me
constant gain matrix. Then G(s)+K is at
least type [2,2, ... 2] if and only if det
[N(s)+D(s)K] has no zeros at the origin.

Proof. Since K has no poles, the poles
of the parallel combination G(s)+K are simply
the poles of G(s). Now G(s)+K can be factor-

ed as
G(s) + K = H(s) [G'(s) + H™'(s)K] (16)
and Eq. (16) can be written as
G(s) + K = H(s)[G'(s) + H™'(s)K]
LY 4"
= H(s)D-'(s) [N(s)+D(s)H~' (s)K]
= H(s)D~" (s) [N(s)+D(s)K]
Hence, G(s)+K is at least type (2,2, ...2 ]~

if and only if det [N(s)+D(s)K] has no zeros

Corollary 2. If G(s) is type [L %2 ...
2] and 4. > 0 for every i, then G(s)4K is
at least type (2,4, ...im].

Proof. Using the property of D(s) given
in Theorem 2, and the assumed values for the
£;:, every element of the product D(s)K is
divisible by s. Then the constant term in
the equation det [N(g)4D(s5)K]=0 must be the
same as the constant term in the equation
det N(s)=0. Since N(s) has no zeros at the
origin, the cons tant term is nonzero. There-
fore det [N(s)+D(s)K] has no zeros at the ori-

gin. [
V. CONCLUSION

In this paper, a theory of system type
for linear multivariable servomechanisms,
which is based on a generalization of the
Hosoe-Ito (6] definition of system type, has
been presented. The mnore general definition
permits the development of results for the
determination of system type for composite
systems

New characterizations of system type have
been formulated and two systematic methods
for determining system type have been derived.
The first method is directly suited for appli-
cation to the transfer function matrix (fre-
guency domain) description of the system, the
second for the state-space (time-domain) re-
presentation. Both are easier to apply than
those in previous studies and are algorithmic
in nature. The second method is the only
known result which treats multivariable sys-
tem type directly in terms of the state-space
quadruple (A,B,C,D) without need to compute
first the corresponding transfer function
matrix.

The results here on system type for com~
posite multivariable linear systems in terms
of the type for the individual subsystems are
also new, and have found applications else-
where [18,23].

APPENDIX

It is known [19] that the system matrix

T(s) U(s)
P(s) =
W(s)

=V(s)
gives rise to the transfer function matrix
G(s) = V(s) T-'(s)U(s) + W(s)

and conversely to within strict system equi-
valence where T,U,V, and W are an, nxr, mxn,
and mxr, respectxvely.

A system matrix which contains decoupl-
ihg zeros can be reduced to one of least or-
der by removal of the decoupling zeros. The
following lemma concerning reduction of order
is needed in the proof of Theorem 2.

Lemma. Let U(s) = diag [1 1l...1 (s=a)l
... 1] where (s-a) is the ith diagonal element
and a is any complex number. Then rank
[T(a) U(a)] < m if and only if every elemnent

B il i A N 50 i B Ot -2 St
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of i of T(s) is divisible by s - «.

Proof. Sufficiency is obvious. Necess-
ity comes from the fact that if any element

of row 1 is not divisible by s -~ a, then at
s = a the remaining m - 1 columns of Ul(a)
and one column of T(a) which has a nonzero

element in row i form a linearly independent
set. Thus, rank {T(s) U(s)] = m for all com-
plex s 1f not all elements of row i of T(s)
are divisible by s - a, 0
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